
Continuous Testing: Shift Left &

Shift Right, Get it RightMarketing

In�ectra 2021

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Table Of Contents

 What is DevOps Anyway? 2

 What are the Elements of DevOps? 4

 What is Continuous Testing? 8

 Shift Left: Testing Early, in the CI Pipeline 9

 Automated Functional Checking 11

 Unit Tests 12

 API & Integration Tests 14

 User Interface (UI) Testing 16

 Continuous Integration (CI) 18

 Non-Functional Testing 19

 Testing Early to Identity Risk 20

 Performance Testing 22

 Security Testing 23

 Usability Testing 24

 Compatibility Testing 25

 Exploratory Testing 27

 Tools Recap 30

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

 Shift Right: Monitoring in Production, after CD 31

 Continuous Deployment (CD) 32

 Post Release Testing 33

 Post-Release Automated Checks 33

 Usability & Experience Testing 34

 A/B and Canary Testing 34

 Monitoring 36

 System Monitoring 36

 Business Monitoring 37

 User Monitoring & Feedback 38

 Chaos Engineering & Self-Healing 40

 Tools Recap 40

 Assessing Risk and Deciding Whether to Go Live 42

 We Don’t Have Enough Time to Test Everything! 43

 Conclusion 44

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Traditionally the words of software development , testing (also known as

Quality Assurance), and the IT infrastructure needed to support such

activities (often called Operations) were separate worlds. The developers

would write code based on the requirements they were given, testers would

test the features based on the same requirements (hopefully?!), and the IT

staff would provide the computers, networks, and software needed by the

two other groups to perform their activities. They would also be in charge

of providing different environments (development, test, staging, production)

that could be used by the development and testing teams.

With the rise of agile methodologies such as Scrum, XP, and Kanban , these

three separate "stove-piped" worlds could no longer exist. The term

Application Lifecycle Management (or ALM) was the uni�cation of

development and testing into a single process, and the logical next step has

been the uni�cation of all three disciplines into a single integrated

process called DevOps:

What is DevOps Anyway?

https://www.inflectra.com/Methodologies/Agile-Development.aspx
https://www.inflectra.com/SpiraTeam/Highlights/Understanding-ALM-Tools.aspx

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

(By Devops.png: Rajiv.Pant derivative work: Wylve - derived from

Devops.png: , Link, originally by Gary Stevens)

What are the Elements of DevOps?

The goal of DevOps is to automate as many of the steps as possible

between an idea being formed and the �nished code being released into

production. This shrinks the time between someone coming up with the

idea of a new product or business and the new product being available in

the marketplace. This means that concerns such as provisioning servers

and other infrastructure as well as scaling a successful application need to

be as automated and seamless as the software development build process.

https://commons.wikimedia.org/wiki/File:Devops.png
https://commons.wikimedia.org/w/index.php?title=User:Rajiv.Pant&action=edit&redlink=1
https://commons.wikimedia.org/wiki/User:Wylve
https://commons.wikimedia.org/wiki/File:Devops.png
https://commons.wikimedia.org/w/index.php?curid=20202905
https://hostingcanada.org/

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

There are many different ways of categorizing tools that improve DevOps,

however in general, it is recognized that the following seven areas need to

be considered when looking for different tools that make up what is usually

known as the DevOps Toolchain:

Now the relative importance of each of these seven items will vary. It will

 depend on:

 Plan is composed of two things: "de�ne" and "plan". This activity

refers to the business value and application requirements

Plan -

requirements

 - code design and development tools,

 continuous integration / build servers

Code / Build source code management

tools,

 — and processes that provide

feedback on business risks

Test / Verify continuous testing tools

 — artifact repository, application pre-deployment staging Package

 — change management, release approvals, release automationRelease

 — infrastructure con�guration and management, Infrastructure

as Code tools

Con�gure

 — applications performance monitoring, end-user experienceMonitor

https://www.inflectra.com/Ideas/Topic/Requirements-Management.aspx
https://www.inflectra.com/TaraVault/
https://www.inflectra.com/Rapise/Highlights/What-is-Automated-Software-Testing.aspx

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

 the type of application (web-based, mobile, legacy desktop, micro-services,

AI, data warehouses)

 the methodology being used (continuous build and integration usually require

an agile methodology)

 whether the applications are in MVP, early adoption, mainstream adoption, or

support

 maintenance mode.

However, one of the criticisms of the term DevOps is that on the surface, it

doesn’t contain a reference to testing or quality. This has led to increasingly

complicated portmanteau such as DevTestOps, DevSecOps,

DevTestSecPerfOps, each one trying to add different types of testing or

quality to the phrase. However, in reality when you actually start to look at

each of the DevOps elements above, you quickly realize that in fact, testing

is everywhere.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

We call this idea Continuous Testing, and changes the traditional notions of

what testing is and when testing should be done!

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

What is Continuous Testing?

Continuous testing is the process of executing tests as part of the software

delivery pipeline to obtain immediate feedback on the business risks

associated with a software release candidate.

1. Originally limited to automated tests in the CI portion

2. Originally limited to automated tests in the CI portion

For Continuous testing, the scope of testing extends from validating

bottom-up requirements or user stories to assessing the system

requirements associated with overarching business goals, and goes all the

way to monitoring the system in production to �nd problems that need to

be corrected.

Adding Continuous Testing to our DevOps diagram gives us this new way of

thinking about software testing and how it �rst into the DevOps lifecycle:

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

As you can see Testing is not limited to one speci�c phase of the pipeline,

but is an integral discipline throughout all the DevOps stages.

Shift Left: Testing Early, in the CI Pipeline

The �rst change in our thinking occurs when we look at the “left-side” of the

DevOps diagram. The concept of “Shift Left” testing means to increase the

amount of testing you’re doing on the left-hand side of the diagram. In this

section, we will discuss how you can improve the testing being done during

development in CI by adding early testing for functionality, usability,

performance, security, and accessibility.

Shifting Left is about removing downstream blockers and �nding and �xing

defects closer to where they are introduced. When you are looking at ways

to add testing to your CI pipeline, you should focus on the following general

aspects:

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

The areas of testing that should be covered early in the CI pipeline typically

include:

In the following sections, we will cover these different areas in more detail.

 Rapid, automated testing to prevent previously known issues from

reappearing

 Identifying areas of risk earlier to understand where to focus testing later

 Do just enough of each type of testing early in the pipeline to determine if

further testing is justi�ed

 Early exploration of features to understand business issues/risks

 Functionality

 Performance

 Security

 Integration

 Infrastructure

 Usability

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Automated Functional Checking

In your DevOps Continuous Integration (CI) pipeline, we recommend that

you have multiple layers of automated tests (often called checks) that

verify that the application is working as expected from a functionality

perspective. These are often called ‘checks’ rather than tests at this stage

because they are mainly checking that the system behaves the way it is

expected, vs. testing for new behaviors.

The different types of automated tests include:

 Unite Tests

 Api & Integration Tests

 User Interface Testing

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

These are the initial building blocks of your automated testing

infrastructure. Suppose you are genuinely following an agile methodology.

In that case, you should be using Test Driven Development (TDD) to ensure

that all your code has unit tests written by developers before it is even

written. However, even in cases where this is not feasible, we recommend

ensuring that all public methods and functions have at least one coded unit

test associated with them.

We recommend that you connect the different unit tests to a test

management tool such as SpiraTest to make sure you get accurate real-

time reporting of the test coverage with every CI build:

Unit Tests

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

There are different xUnit testing frameworks for different languages, so

make sure you choose the appropriate framework for your platform (NUnit,

jUnit, PyTest, etc.) and that your developers are managing the testing code

in the same SCM tool (e.g., Git) as your software code. The same best

practices for having frequent code reviews and adhering to documented

coding standards apply to your test code. As many leaders in the testing

community advocate – “automated testing code” is “code” and should be

treated with the same provenance and importance as the application code

itself.

One of the dangers of unit testing code written by the developers is that

they will only test the ‘happy path’ �ows in the program, so we recommend

that the primary developers write the initial unit test, which acts as a source

of documentation for the code. Then have other developers / QA resources

review the code and expand the coverage of the code in the unit test. Some

standard techniques for making sure your unit tests have good coverage

include:

 Fuzz Testing

 Mutation Testing

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Since APIs are crucial interfaces that different parts of your system may

rely on to communicate, and also are often used heavily by external clients,

having a repeatable, automated robust set of API tests in your CI pipeline

makes a lot of sense. Such API tests need to cover all the various versions

and formats (REST, SOAP, ODATA, GraphQL, etc.) that are supported and be

fast enough to be executed in every CI build.

In keeping with the philosophy of continuous testing, if you have any

slower, long-running API tests, they should be kept outside the CI pipeline

and run later in the DevOps cycle, potentially used only when one of the

other earlier API tests indicates an area of risk to investigate.

API & Integration Tests

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

In all cases, have the API tests integrated with your test management tool

(such as SpiraTest) to ensure that any failures in the test are reported back

against the appropriate release and requirements. This allows the impact of

the failures to be visualized in real-time.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

User Interface (UI) Testing

Typically, UI testing is something that is thought of as being an activity that

should happen later in the DevOps lifecycle because the risk of application

changes invalidating the testing (or breaking the tests in the case of

automated UI tests) is greater at this stage.

Following the philosophy of Continuous Testing, we’d recommend that you

conduct some UI testing in the early stages of the DevOps lifecycle, using

that information to prioritize and focus later, deeper testing activities that

happen later on.

For automated tests, we recommend using a tool such as Rapise that

employs a codeless, model-based approach that makes writing initial tests

and changing tests later easier. That way, when changes happen, you can

adapt your tests more easily. In addition, for the “shift left” activities, we’d

recommend writing automated tests that focus on simple high-level,

repeatable tests that save time (e.g., logging in with every user, role,

permission, and web browser) over deep, complex scenarios (creating a

purchase order and receiving goods) that should be done later, when the

application is more stable.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

For manual testing, we’d recommend using rapid, exploratory techniques

such as exploratory testing , session-based testing , where testers can

follow high-level project charters to uncover potential issues and areas of

risk. Later on, these insights can be used to focus deeper, more structured

scenario manual tests on the areas that were uncovered.

For example, when doing exploratory testing, it was identi�ed that the

permissions checks seemed to be unreliable in some of the screens. Later

on, in the DevOps cycle, these early insights could be used to have the

testing team perform some more exhaustive testing on the authorization

system. This early, rapid feedback lets you �nd the Rumsfeldian “unknown

unknowns” that will otherwise come back to bite you later. We will cover this

more later in the section on Exploratory Testing.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

One of the assumptions we have made in the effort to “Shift Left” our

testing is that we’ll be using CI automation tools such as Jenkins, TeamCity,

or other DevOps pipeline platforms.

We recommend that you use the CI pipelines to orchestrate the various

automated checks and have the CI pipeline report back into the same

enterprise test management tool (SpiraTest) as the various testing

frameworks that have been integrated.

This approach of early feedback to inform later testing also applies to the

realm of “non-functional” tests that traditionally have been done later in the

lifecycle of the release. In adopting Continuous Testing practices, we need

to understand how we can also “Shift Left” these activities as well.

Continuous Integration (CI)

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Non-Functional Testing

Unfortunately, although great strides have been made with agile and

DevOps practices to move testing further “to the left”, with unit tests and

automated functional checks, the area of non-functional tests has tended

to remain an activity done at the last minute, close to release.

With the adoption of continuous testing, we recommend the following

approach be taken:

 Don’t leave these to the end of the process, before deployment

 Do just enough of each type of testing early in the pipeline to determine if

further testing will be needed later.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Testing Early to Identity Risk

The key to being successful with non-functional testing is to avoid the two

extremes: doing none of these tests until the system is developed and ready

for deployment and doing all of these tests so that you don’t have enough

time in the various sprints.

It is probably best to perform lightweight, rapid testing in each of these

areas so that you can determine early which ones will need deeper testing

later.

For example, if your early security scans determine that no material

changes have been made to the system and the underlying libraries have

no new vulnerabilities, maybe you can avoid a deeper penetration test later.

If you look at this approach as a general guideline, use each of your “shift

left” tests to identify the areas of most risk, and schedule deeper testing

(for later in the process) for only these areas:

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Performance Testing

For the early tests, we may not even need to use a traditional load testing

tool, maybe just recording the build durations in our test management tool

will be su�cient. If we see the build time on the same infrastructure take >

5% longer than the previous version, it’s time to do a load test later on with

a more powerful tool such as NeoLoad or JMeter.

As another example, if we consider performance / load testing, we can

compare the difference between what we might try and do in our “shift left”

tests vs. what we’ll do later on:

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Security Testing

We have already mentioned this earlier, but in the same vein, for our initial

early tests, we can run some simple, fast tools to check common issues:

These will �nd common issues like out-of-date libraries, OWASP top 10

vulnerabilities such as XSS, SQL Injection, CSRF, etc., that can be easily

addressed during development. These tools are also relatively fast and so

can be incorporated into your CI pipeline.

In addition, they will also indicate where there are weaknesses that you can

test for in your post-development testing:

 Dependency Checking Tools

 Dependency Tracking Tools

 Library managers (Nuget, Maven, NPM, etc.)

 Code Analysis (SonarQube, PyLint, Visual Studio, etc.)

 Vulnerability Scanning (OWASP ZAP)

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Usability Testing

Use a PCI-DSS scanning tool to �nd any vulnerabilities once deployed on

the production (or replica) environment.

Schedule a manual penetration test (pen-test) using the results from the

earlier automated tests to focus the pen-test on speci�c areas of

weakness.

Normally usability testing is something that is done towards the end of

development once the UI is stable. However, we’d recommend conducting

some usability testing on early builds, even if some of the data and screens

have to be faked. That way, you can get early feedback on core UX

elements such as navigation, screen layouts, etc., while there is still time to

make changes without a lot of rework.

In accordance with the principles of continuous testing, this early UX

feedback doesn’t mean you don’t do additional UX testing later on; it just

means you can get some feedback earlier (before people get too attached

to the design!).

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

For example, it is tempting to take the latest CI build and try running it on

the worst environment (IE11 for example) with an eye to breaking it by

trying lots of crazy tests. However, if there are major bugs, it will be hard for

the developers to distinguish if it’s the latest change or the environment

that caused the problem.

So, we would recommend that you focus initially on testing the simplest use

cases (aka the “happy path”) and use the same environment that

developers were using (e.g., the Google Chrome web browser). That way

any bugs in functionality are truly due to code changes and not the

environment.

Another area of testing that can bene�t from continuous testing is the

testing across different environments.

Compatibility Testing

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

You should also do some limited exploring using the other environments,

perhaps try the “worst” environment (e.g., IE11) and see if there is anything

different. In those cases, don’t log bugs, simply add them to the test plan

for the later, exhaustive compatibility testing that you will be doing.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

This is because, when you are de�ning a system, you have the “box” of

what are the understood and de�ned features:

It is an often under-appreciated fact that great testers �nd issues that no

one knows about, the so-called Rumsfeldian (named after Donald Rumsfeld,

Secretary of Defense) “unknown unknowns”. So even though you may have

a great library of automated checks and manual test scenarios in your test

plan, you need to always allow time for exploratory and other forms of

unstructured testing.

Exploratory Testing

However, the actual system will have many small design choices, coding

decisions, and other unappreciated changes that were made along the way.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Conceptually that means the actual system will not be a 100% reproduction

of what was designed, so inevitably, even if you have the best test plan in

the world, with 100% test coverage of all your requirements, there will

always be ‘edge cases’ that need to be discovered and tested.

 Agile methodologies avoid the use of long, prescriptive, “set in stone”

requirements so that the team has the �exibility to make smart decisions in

developing the system as they go along. That means the actual system

looks like this:

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

One of the bene�ts of exploratory testing is that it maximizes the cognitive

abilities and human testers instead of treating them like machines

(following a script). Exploratory testing is a great way of �nding those edge

cases, especially early in the sprints when functionality is being

created/updated iteratively.

Exploratory testing should be done using a test management tool that has

built-in support for exploratory testing, where you can document your

�ndings in real-time, in conjunction with a capture tool that captures your

sessions automatically.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Tools Recap

We have mentioned some tools in the previous sections, but just to recap,

here are some ideas:

The one recommendation we have for these early testing activities is to

avoid labeling the �ndings ‘bugs’; typically, these early explorations may

�nd observations that could be bene�cial as well as harmful. You are

looking for areas of risk and providing feedback to the development team.

Much of what you may �nd may be known or intended, or if not, may be

“better than what was intended.” We recommend you use project tasks to

track these rather than bugs or issues.

 Dependency checkers – DependencyCheck

 Static Code Analysis – Parasoft, SonarQube

 Unit Tests – xUnit (jUnit, Nunit, PyTest, etc.)

 Performance Tests – JMeter, Gatling, NeoLoad

 API Testing – Postman, Rapise, SoapUI

 Security Testing – OWASP ZAP

 UI Testing – Rapise, Selenium

 Exploratory Testing – SpiraCapture

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

In continuous testing, “Shifting Right” refers to continuing to test the

software after it is released into production. Also known as “testing in

production,” the process can refer to either testing in actual production or a

post-production environment.

The key aspect is that Shifting Right is all about leveraging the insights and

usage of real customers and access to production data to test effectively

and support feedback loops.

Shift Right: Monitoring in Production, after CD

Shift Left testing relies on �nding problems early with fast, repetitive testing

that uncovers areas of risk and tries to prevent problems from occurring.

Shift Right testing, on the other hand, involves monitoring user behavior,

business metrics, performance and security metrics, and even deliberate

failure experiments (chaos testing) to see how resilient the system is to

failures.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Continuous Deployment (CD)

In agile projects, Continuous Integration (CI) means that you are

continuously integrating and testing the code so that it could be

theoretically be deployed into production at any time. However, Continuous

Deployment (CD) takes this one step further and automates the process of

actually deploying the code into production in an automated fashion.

Usually, with CD environments, because you are reducing or eliminating the

manual “go/no-go” decision process, there should be a way to seamlessly

roll back the update just as easily.

With CD, a lot depends on the type of application being deployed (SaaS,

PaaS, on-premise, etc.) and the infrastructure in place (physical, virtual,

containerized, cloud, etc.), however in general, CD is all about automating

the process from being release-ready (CI), tests passed, to being released

into production, with post-release checks in place.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Post-Release Automated Checks

Post Release Testing

You can usually take your existing automated unit tests and run a subset

of them against production. You have to be careful because you are dealing

with live customer data, so some automated tests will have to be modi�ed

or excluded because of how they would change live data.

Once you have released the system into production, testing does not end.

You will need to perform a variety of post-release tests:

Once the code changes have been deployed into production, you should

automatically run a set of non-destructive, automated functional tests that

test that the code released into production behaves functionally the same

as what was tested in development. This may sound obvious, but it is

amazing how often different con�gurations used in production (higher

security, higher availability, etc.) can cause the system to behave differently.

 Post-Release Automated Checks

 Usability & Experience Testing

 A/B and Canary Testing

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Shift-right testing also is concerned with the business value and usability of

the updated version, i.e., do the new user stories make the system better

for the users. Even though the system is now live, you can still perform

usability and experience testing to make sure that users can understand

any UI changes and that the system has not degraded the experience. Two

techniques for measuring this are A/B testing and Canary Testing.

A/B and Canary Testing

In digital marketing, A/B testing is a widespread technique that is now

being “borrowed” in the world of software development and DevOps. You

divide up your customers into two groups (“A” and “B”). Half of the users

get the old version of the system (“A”), and the other half get the new

version of the system (“B”). This means your CD system needs to be able to

deploy to speci�c regions or instances at different cadences. You can then

survey or measure users’ interactions with both versions. For example, in

an e-commerce system, you could measure what % of new prospects

purchase a product using the two versions of the system.

Usability & Experience Testing

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

A variation of “A/B testing is “Canary Testing” so-called because it mirrors

the idea of the canary in the coal mine that alerts miners to the �rst

presence of the poison gas. With Canary Testing, you push the latest

update to just a small community of users that you know will react quickly

to any changes. For example, you might have an “early adopter” update

channel to which motivated users can subscribe.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

So once the code has been pushed into production, you should ideally have

a system monitoring dashboard that lets you see the key metrics (security,

performance, etc.) from the live system in real-time. There are subtle

differences; for example, performance monitoring focuses on checking the

system response time, CPU utilization, etc., under the current load, vs.

generating load to see when problems occur.

Many of the non-functional testing tools used in Shift Left testing (load,

performance, security, etc.) have similar tools that are used for monitoring

(performance monitoring, security monitoring, etc.) the same metrics in

production.

System Monitoring

In addition to post-release testing (which tends to happen immediately after

pushing code into production), continuous monitoring is the other aspect of

“Shift Right” testing that needs to be put in place, both system, and

business metric monitoring.

Monitoring

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

In addition to system metrics, you can learn a lot about a system by

monitoring the various business metrics and correlating them together. For

example, if you have a website that tracks signups (conversions) and

actual sales (revenue/orders), you can measure the ratio of the two metrics

(sales conversion rate), and if you were to get a sudden drop in this rate

after a code push, you would quickly know to check the user �ow to make

sure a bug has not been introduced that prevents a user completing a sale.

Business Monitoring

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

In this way, business metrics can be a helpful indicator of a problem that

system monitoring may have missed! In addition, monitoring different

business metrics can be used to “test” the business value of system

changes. For example, a change that makes the application faster but

generates less valuable orders might be desirable for users, but not for the

company!

User Monitoring & Feedback

Another important source of feedback on a system release is users.

Therefore, your customer support system (help desk, service management

solution (ITSM), etc.) is an important source of feedback data. If you have

accidentally introduced a new defect or functionality regression, your users

will let you know quickly.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

If you start seeing a trend from trusted users raising support tickets about

a speci�c issue, you can immediately have a ‘tiger team’ do an investigation

and get a hot�x into the CI/CD pipeline, or if serious enough, you can

potentially rollback the change before it affects other users.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

We have mentioned some tools in the previous sections, but just to recap,

here are some ideas:

Tools Recap

If you decide to implement Chaos Engineering, you will need to ensure you

have developed real-time monitoring and “self-healing” services that detect

the failures and can have the system adapt to them in real time. For

example, you could have the infrastructure spin up additional resources,

route tra�c around the degraded instances, and take other protective and

reactive measures.

Finally, one relatively innovative approach taken by some companies (most

notably Net�ix with its Chaos Monkey) is to have an automated agent that

deliberately (and randomly) terminates instances in production to ensure

that engineers implement their services to be resilient to instance failures.

Chaos Engineering & Self-Healing

 System Monitoring

 Performance – Dynatrace

 Security - Cloudwatch

 Customer Help Desk – ZenDesk, KronoDesk, Remedy, etc.

https://netflix.github.io/chaosmonkey/

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

 Customer Behavior – Google Analytics, Splunk, Matomo

 Business Monitoring

 Traditional BI Platforms – PowerBI, Splunk, Cognos, Domo, etc.

 AI-Driven Data Analytics – Qlik, Tellius, etc.

 Data Visualization – Tableau, etc.

 Customer Satisfaction – Delighted, Promoter, AskNicely, etc.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

In a true Continuous Deployment (CD) system, you may have automated

the part where the DevOps infrastructure pushes code into production. Still,

even so, you will need to have codi�ed the rules to determine when the

system is “stable enough” for release. In a traditional “manual” release

process, you have a human manager reviewing the testing information and

deciding to go live.

In either case, you are going to have to answer the following two questions:

The �nal part of Continuous Testing is the part in the middle: in between

rapid testing that identi�es risks and uncovers areas to test further and

released into production is the part where you evaluate all of the test

results and decide whether to go live.

Assessing Risk and Deciding Whether to Go Live

 How Do We Know if We Can Release into Production?

 How Do We Know We Have Tested the Right Areas?

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

We Don’t Have Enough Time to Test Everything!

The reality is that whether manual or automated, you will not have enough

time in an agile, CI/CD environment to retest every part of the system 100%

with all your tests. If you use a combination of Shift-Left techniques to

know where to focus, deeper testing in the middle to explore those areas,

and Shift-Right to be able to identify and recover quickly from a problem,

then the key is to understand at what point do you have enough data to

determine that the risk from releasing is less than the risk from not

releasing.

That does not mean there is zero risk from a bug, just that the risk of a bug

occurring is less critical than the risk that existing bugs remain un�xed, and

that the business risk of delaying that feature is greater than the business

risk of an issue that impacts users.

Continuous Testing - Shift Left, Shift Right

In�ectra 2021

Conclusion

In conclusion, when you are looking to incorporate Continuous Testing

practices into your DevOps process, these are the three areas you will need

to prioritize and plan for:

 Integrate Shift-Left techniques into your CI Pipeline. Address risk areas

identi�ed early to focus deeper testing

 Add Shift-Right techniques into your post-deployment infrastructure so that

testing doesn’t end after live

 Have a risk-based approach to deciding when to release functionality into

production

adam.sandman@in�ectra.com

by Adam Sandman,

The founder and CEO,

In�ectra

Founded in 2006, In�ectra is a market leader in software test
management, test automation, application lifecycle
management, and enterprise portfolio management space with
its SpiraPlan, Rapise and KronoDesk Platforms. The company is
headquartered in the USA but has o�ces in over 10 countries.
Known globally for its legendary customer support, In�ectra
makes turn-key solutions that address many challenges in
software testing and QA, test automation, and product lifecycle
management. Its methodology agnostic software tools are used
in regulated industries where portfolio management,
requirements traceability, release planning, resource
management, document work�ow, baselining, and enterprise
risk analysis are required. The company uses a concurrent
pricing model for all its tools with unlimited products, projects,
sprints, tests, API calls, included in a single price. All In�ectra
products have a 30-day free trial.

