inflectra’

Inflectra 2021

Table Of Contents

What is DevOps Anyway?
What are the Elements of DevOps?
What is Continuous Testing?
Shift Left: Testing Early, in the (I Pipeline
Automated Functional Checking
Unit Tests
API & Integration Tests
User Interface (UI) Testing
Continuous Integration (Cl)
Non-Functional Testing
Testing Early to Identity Risk
Performance Testing
Security Testing
Usability Testing
Compatibility Testing
Exploratory Testing

Tools Recap

O o0 & N

11
12
14
16
18
19
20
22
23
24
25
27
30

shift Right: Monitoring in Production, after (D

Continuous Deployment (CD)
Post Release Testing
Post-Release Automated Checks
Usability & Experience Testing
A/B and Canary Testing
Monitoring
System Monitoring
Business Monitoring
User Monitoring & Feedback
Chaos Engineering & Self-Healing
Tools Recap
Assessing Risk and Deciding Whether to Go Live
We Don't Have Enough Time to Test Everything!

Conclusion

31
32
33
33
34
34
36
36
37
38
40
40
42
43

What is DevOps Anyway?

Traditionally the words of software development , testing (also known as

Quality Assurance), and the IT infrastructure needed to support such
activities (often called Operations) were separate worlds. The developers
would write code based on the requirements they were given, testers would
test the features based on the same requirements (hopefully?!), and the IT
staff would provide the computers, networks, and software needed by the
two other groups to perform their activities. They would also be in charge
of providing different environments (development, test, staging, production)

that could be used by the development and testing teams.

With the rise of agile methodologies such as Scrum, XP, and Kanban , these
three separate "stove-piped” worlds could no longer exist. The term
Application Lifecycle Management (or ALM) was the unification of
development and testing into a single process, and the logical next step has

been the unification of all three disciplines into a single integrated

process called DevOps:

https://www.inflectra.com/Methodologies/Agile-Development.aspx
https://www.inflectra.com/SpiraTeam/Highlights/Understanding-ALM-Tools.aspx

Development

(SOFTWARE ENGINEERING)

QA

(QUALITY ASSURANCE)

Operations

(By Devops.png: Rajiv.Pant derivative work: Wylve - derived from

Devops.png:, Link, originally by Gary Stevens)

The goal of DevOps is to automate as many of the steps as possible
between an idea being formed and the finished code being released into
production. This shrinks the time between someone coming up with the
idea of a new product or business and the new product being available in
the marketplace. This means that concerns such as provisioning servers
and other infrastructure as well as scaling a successful application need to

be as automated and seamless as the software development build process.

What are the Elements of Dev0ps?

https://commons.wikimedia.org/wiki/File:Devops.png
https://commons.wikimedia.org/w/index.php?title=User:Rajiv.Pant&action=edit&redlink=1
https://commons.wikimedia.org/wiki/User:Wylve
https://commons.wikimedia.org/wiki/File:Devops.png
https://commons.wikimedia.org/w/index.php?curid=20202905
https://hostingcanada.org/

There are many different ways of categorizing tools that improve DevOps,

however in general, it is recognized that the following seven areas need to
be considered when looking for different tools that make up what is usually

known as the DevOps Toolchain:

¢ Plan - Planis composed of two things: "define” and "plan’. This activity
refers to the business value and application requirements requirements

e Code / Build - code design and development tools, source code management
tools, continuous integration / build servers

e Test/ Verify — continuous testing tools and processes that provide

feedback on business risks

o Package — artifact repository, application pre-deployment staging

¢ Release — change management, release approvals, release automation

 Configure — infrastructure configuration and management, Infrastructure
as Code tools

 Monitor — applications performance monitoring, end-user experience

Now the relative importance of each of these seven items will vary. It will

depend on:

https://www.inflectra.com/Ideas/Topic/Requirements-Management.aspx
https://www.inflectra.com/TaraVault/
https://www.inflectra.com/Rapise/Highlights/What-is-Automated-Software-Testing.aspx

« the type of application (web-based, mobile, legacy desktop, micro-services,
Al, data warehouses)

« the methodology being used (continuous build and integration usually require
an agile methodology)

o whether the applications are in MVP, early adoption, mainstream adoption, or
support

e maintenance mode.

However, one of the criticisms of the term DevOps is that on the surface, it
doesn't contain a reference to testing or quality. This has led to increasingly
complicated portmanteau such as DevTestOps, DevSecOps,
DevTestSecPerfOps, each one trying to add different types of testing or
quality to the phrase. However, in reality when you actually start to look at
each of the DevOps elements above, you quickly realize that in fact, testing

is everywhere.

We call this idea Continuous Testing, and changes the traditional notions of

what testing is and when testing should be done!

What is Continuous Testing?

Continuous testing is the process of executing tests as part of the software

delivery pipeline to obtain immediate feedback on the business risks

associated with a software release candidate.

1. Originally limited to automated tests in the CI portion

2. Originally limited to automated tests in the CI portion

For Continuous testing, the scope of testing extends from validating
bottom-up requirements or user stories to assessing the system
requirements associated with overarching business goals, and goes all the
way to monitoring the system in production to find problems that need to

be corrected.

Adding Continuous Testing to our DevOps diagram gives us this new way of

thinking about software testing and how it first into the DevOps lifecycle:

TESTING _ : TESTING

TESTING = TESTING

Continuous Testing - Shift Left, Shift Right

As you can see Testing is not limited to one specific phase of the pipeline,

but is an integral discipline throughout all the DevOps stages.

Shift Left: Testing Early, in the (I Pipeline

The first change in our thinking occurs when we look at the “left-side” of the
DevOps diagram. The concept of “Shift Left” testing means to increase the
amount of testing you're doing on the left-hand side of the diagram. In this
section, we will discuss how you can improve the testing being done during
development in Cl by adding early testing for functionality, usability,

performance, security, and accessibility.

TESTING TESTING

TESTING TESTING

Shifting Left is about removing downstream blockers and finding and fixing
defects closer to where they are introduced. When you are looking at ways
to add testing to your CI pipeline, you should focus on the following general

aspects:

Inflectra 2021

Rapid, automated testing to prevent previously known issues from

reappearing

Identifying areas of risk earlier to understand where to focus testing later
Do just enough of each type of testing early in the pipeline to determine if
further testing is justified

Early exploration of features to understand business issues/risks

The areas of testing that should be covered early in the Cl pipeline typically

include:

Functionality
Performance
Security
Integration
Infrastructure

Usability

In the following sections, we will cover these different areas in more detail.

Continuous Testing - Shift Left, Shift Right

Automated Functional Checking

In your DevOps Continuous Integration (Cl) pipeline, we recommend that
you have multiple layers of automated tests (often called checks) that
verify that the application is working as expected from a functionality
perspective. These are often called ‘checks’ rather than tests at this stage
because they are mainly checking that the system behaves the way it is

expected, vs. testing for new behaviors.

_ Jenkins

= New item Descoption
& Fecple
= Bulld History
Project Relationship
a7 | Check File Fingerprint

% Manage Jenkins Last Upoaest

The different types of automated tests include:

e Unite Tests
o Api & Integration Tests

e User Interface Testing

Inflectra 2021

Unit Tests

These are the initial building blocks of your automated testing

infrastructure. Suppose you are genuinely following an agile methodology.
In that case, you should be using Test Driven Development (TDD) to ensure
that all your code has unit tests written by developers before it is even
written. However, even in cases where this is not feasible, we recommend
ensuring that all public methods and functions have at least one coded unit

test associated with them.

We recommend that you connect the different unit tests to a test
management tool such as SpiraTest to make sure you get accurate real-

time reporting of the test coverage with every Cl build:

!t"
* Tests the addition of the two values
=
frest
[@Spif‘a‘restcase(testcdseId=5)]
public veid testadd()

{

double result = fvaluel + fvalue?;

/I forced failure result == 5
assertTrue (result == 6);

¥

P Visual Studio ((IlT 'Eg pgthon“

Ju. €3 = PYtest 4 Ry

There are different xUnit testing frameworks for different languages, so

make sure you choose the appropriate framework for your platform (NUnit,
jUnit, PyTest, etc.) and that your developers are managing the testing code
in the same SCM tool (e.g., Git) as your software code. The same best
practices for having frequent code reviews and adhering to documented
coding standards apply to your test code. As many leaders in the testing
community advocate - "automated testing code” is “code” and should be
treated with the same provenance and importance as the application code
itself.

One of the dangers of unit testing code written by the developers is that
they will only test the ‘happy path’ flows in the program, so we recommend
that the primary developers write the initial unit test, which acts as a source
of documentation for the code. Then have other developers / QA resources
review the code and expand the coverage of the code in the unit test. Some
standard techniques for making sure your unit tests have good coverage

include:

o Fuzz Testing

e Mutation Testing

API & Integration Tests

Since APIs are crucial interfaces that different parts of your system may

rely on to communicate, and also are often used heavily by external clients,

having a repeatable, automated robust set of API tests in your Cl pipeline

makes a lot of sense. Such API tests need to cover all the various versions
and formats (REST, SOAP, ODATA, GraphQL, etc.) that are supported and be

fast enough to be executed in every Cl build.

APl

Business Logic

API
Client

In keeping with the philosophy of continuous testing, if you have any
slower, long-running API tests, they should be kept outside the Cl pipeline
and run later in the DevOps cycle, potentially used only when one of the
other earlier API tests indicates an area of risk to investigate.

In all cases, have the API tests integrated with your test management tool
(such as SpiraTest) to ensure that any failures in the test are reported back
against the appropriate release and requirements. This allows the impact of

the failures to be visualized in real-time.

User Interface (Ul) Testing

Typically, Ul testing is something that is thought of as being an activity that

should happen later in the DevOps lifecycle because the risk of application
changes invalidating the testing (or breaking the tests in the case of

automated Ul tests) is greater at this stage.

Following the philosophy of Continuous Testing, we'd recommend that you
conduct some Ul testing in the early stages of the DevOps lifecycle, using
that information to prioritize and focus later, deeper testing activities that

happen later on.

For automated tests, we recommend using a tool such as Rapise that
employs a codeless, model-based approach that makes writing initial tests
and changing tests later easier. That way, when changes happen, you can
adapt your tests more easily. In addition, for the “shift left" activities, we'd
recommend writing automated tests that focus on simple high-level,
repeatable tests that save time (e.g., logging in with every user, role,
permission, and web browser) over deep, complex scenarios (creating a

purchase order and receiving goods) that should be done later, when the

application is more stable.

Manual Tests
iy w0 edit existing baok
[

For manual testing, we'd recommend using rapid, exploratory techniques
such as exploratory testing , session-based testing , where testers can
follow high-level project charters to uncover potential issues and areas of
risk. Later on, these insights can be used to focus deeper, more structured

scenario manual tests on the areas that were uncovered.

For example, when doing exploratory testing, it was identified that the
permissions checks seemed to be unreliable in some of the screens. Later
on, in the DevOps cycle, these early insights could be used to have the
testing team perform some more exhaustive testing on the authorization
system. This early, rapid feedback lets you find the Rumsfeldian “unknown

unknowns” that will otherwise come back to bite you later. We will cover this

more later in the section on Exploratory Testing.

Continuous Integration (CI)

One of the assumptions we have made in the effort to “Shift Left” our

testing is that we'll be using Cl automation tools such as Jenkins, TeamCity,

or other DevOps pipeline platforms.

£ Jenkins

o e A s 1

&
{
z
[.
I
i
5

&
3
£
£
Ed
X YT Y T
E
E
3
£
1
;
F
E

-

Lt] o
BueRE il e e A vt A S b 07 wa

BEE g0l et G e T byt DL b b BT

EE of o . Bleean Fedbe e e O e el b L Bl

We recommend that you use the Cl pipelines to orchestrate the various
automated checks and have the Cl pipeline report back into the same
enterprise test management tool (SpiraTest) as the various testing

frameworks that have been integrated.

This approach of early feedback to inform later testing also applies to the
realm of “‘non-functional” tests that traditionally have been done later in the

lifecycle of the release. In adopting Continuous Testing practices, we need

to understand how we can also “Shift Left” these activities as well.

Non-Functional Testing

Unfortunately, although great strides have been made with agile and

DevOps practices to move testing further “to the left”, with unit tests and
automated functional checks, the area of non-functional tests has tended

to remain an activity done at the last minute, close to release.

FUNCTIONAL TESTING

:i [Acceptance Testing i E [V System Testing

| [% Unit Testing 0 [Integration Testing
1 [

..

FUNCTIONAL TESTING

i [+ Performance Testing E i [V Security Testing i i [+ Usability Testing i E [+ Compatibility Tesﬁngi
I (Nl [} (N}]

www.inflectro com

With the adoption of continuous testing, we recommend the following

approach be taken:

¢ Don'tleave these to the end of the process, before deployment

¢ Dojustenough of each type of testing early in the pipeline to determine if

further testing will be needed later.

Testing Early to Identity Risk

The key to being successful with non-functional testing is to avoid the two
extremes: doing none of these tests until the system is developed and ready
for deployment and doing all of these tests so that you don't have enough

time in the various sprints.

It is probably best to perform lightweight, rapid testing in each of these

areas so that you can determine early which ones will need deeper testing

later.

Feidery 2t L + by Tl Cone Satel | & fwwin | T Fie v EM v B T W Sl

e .)
isplaying [~ T 0o of % tect caselel for this rckase wn . A FenEs by MAME Lk <itee | Y - v e
+ W common Tese ke e i
R B - - CES o
% Heqrassion Tests : =
= iy Do i —ang— v | [T [
Feiaan | E o= _ a | s
L m Lemeoc i Bl = Abar-d
Bt | Aca =
T e ek 08 =] Frar
Quek Fillmy B O ow ot | —] 4 W 708
IHa s somlatdul [e Soenarn Tees = J
L a kst i crente e aurhice I e 20 k2o P i Fraky tar et Perrenal =
Compansnts -
T o ity b ot e Lk Fris B pravE Frud Bl Tty el et e
e ddministition =
< Anlity b ot ecting tho Elzchsc o P St HRTE Frid Eloigs Pty far st Furcrandl s
e duther Managemars |
: " . i s M 3114 ¢ e
Hodk Marcgemant G Sk e GG ki sk Remiem Ariminisimbnl 1A Fred oz, Fraty for st Freranal T3
<2 Antity by s hook 1n At o Sy Al B30 Fred Shoges feady ferEEC Fasenonal o

< uting MR e ncks Hot B et gz et seanann L=

e ke i b i Sk Mt i Trud Hisggm. Uall. Sedmary

' T agdop oew boos ane suift IR et un oz B Emin Aopeezd seenang we
@ duihor marag=ment -5 Ine & SN Eraty tor et Begwseon s
T o umk nwreemmant) un ¥ zmEn Facty fr il Hagneusn e
b oo e Mt Fun Loz P 5D D Seanary =]

For example, if your early security scans determine that no material

nm oo i

T

changes have been made to the system and the underlying libraries have

no new vulnerabilities, maybe you can avoid a deeper penetration test later.

If you look at this approach as a general guideline, use each of your “shift

left” tests to identify the areas of most risk, and schedule deeper testing

Performance Testing

As another example, if we consider performance / load testing, we can
compare the difference between what we might try and do in our “shift left”

tests vs. what we'll do later on:

Example: Performance Testing

Early Load Testing Full-Blown Load Testing
* Development hardware * Replica of production

* No isolation hardware

- 10 VUs, 10,000 requests * Dedicated environment

« Analyze trends * Isolated networks

* Is this Cl build faster or * 10,000 VUs for 4 hours
slower than before? * What is the maximum load,

- Should we spend more time throughput, bottlenecks
testing it later? * Do we meet our SLAs?

For the early tests, we may not even need to use a traditional load testing
tool, maybe just recording the build durations in our test management tool
will be sufficient. If we see the build time on the same infrastructure take >

5% longer than the previous version, it's time to do a load test later on with

a more powerful tool such as NeolLoad or JMeter.

Security Testing

We have already mentioned this earlier, but in the same vein, for our initial

early tests, we can run some simple, fast tools to check common issues:

Dependency Checking Tools

Dependency Tracking Tools

Library managers (Nuget, Maven, NPM, etc.)

Code Analysis (SonarQube, PyLint, Visual Studio, etc.)
Vulnerability Scanning (OWASP ZAP)

These will find common issues like out-of-date libraries, OWASP top 10
vulnerabilities such as XSS, SQL Injection, CSRF, etc., that can be easily
addressed during development. These tools are also relatively fast and so

can be incorporated into your Cl pipeline.

g F

DEPENDENCY-CHECK DEPENDENCY-TRACK
\ 2 B \
@ python” &, VA Y ANE)
neden Java @ nuget

In addition, they will also indicate where there are weaknesses that you can

test for in your post-development testing:

Use a PCI-DSS scanning tool to find any vulnerabilities once deployed on

the production (or replica) environment.

Schedule a manual penetration test (pen-test) using the results from the
earlier automated tests to focus the pen-test on specific areas of

weakness.

Usability Testing

Normally usability testing is something that is done towards the end of
development once the Ul is stable. However, we'd recommend conducting
some usability testing on early builds, even if some of the data and screens
have to be faked. That way, you can get early feedback on core UX
elements such as navigation, screen layouts, etc., while there is still time to

make changes without a lot of rework.

In accordance with the principles of continuous testing, this early UX
feedback doesn't mean you don't do additional UX testing later on; it just

means you can get some feedback earlier (before people get too attached

to the design!).

Compatibility Testing

Another area of testing that can benefit from continuous testing is the

testing across different environments.

For example, it is tempting to take the latest Cl build and try running it on
the worst environment (IE11 for example) with an eye to breaking it by
trying lots of crazy tests. However, if there are major bugs, it will be hard for
the developers to distinguish if it's the latest change or the environment

that caused the problem.

If it breaks here, then

no point trying further
levels in the hierarchy

‘ Edge Cases, All Environments

So, we would recommend that you focus initially on testing the simplest use
cases (aka the "happy path”) and use the same environment that
developers were using (e.g., the Google Chrome web browser). That way
any bugs in functionality are truly due to code changes and not the

environment.

You should also do some limited exploring using the other environments,

perhaps try the “worst” environment (e.g., IE11) and see if there is anything

different. In those cases, don't log bugs, simply add them to the test plan

for the later, exhaustive compatibility testing that you will be doing.

Exploratory Testing

It is an often under-appreciated fact that great testers find issues that no
one knows about, the so-called Rumsfeldian (named after Donald Rumsfeld,
Secretary of Defense) “‘unknown unknowns”. So even though you may have
a great library of automated checks and manual test scenarios in your test
plan, you need to always allow time for exploratory and other forms of

unstructured testing.

This is because, when you are defining a system, you have the “box”" of

what are the understood and defined features:

However, the actual system will have many small design choices, coding

decisions, and other unappreciated changes that were made along the way.

Agile methodologies avoid the use of long, prescriptive, “set in stone”
requirements so that the team has the flexibility to make smart decisions in
developing the system as they go along. That means the actual system

looks like this:

The Actual System

Conceptually that means the actual system will not be a 100% reproduction
of what was designed, so inevitably, even if you have the best test plan in
the world, with 100% test coverage of all your requirements, there will

always be ‘edge cases’ that need to be discovered and tested.

Edge Cases

The Actual System

One of the benefits of exploratory testing is that it maximizes the cognitive

abilities and human testers instead of treating them like machines
(following a script). Exploratory testing is a great way of finding those edge
cases, especially early in the sprints when functionality is being

created/updated iteratively.

Exploratory testing should be done using a test management tool that has
built-in support for exploratory testing, where you can document your
findings in real-time, in conjunction with a capture tool that captures your

sessions automatically.

O txplorateryTutingoes @ € [} inflectr 7

n ml Click an image from the sidebar to axpand it
B osteplam oo

.....

.....

i e gy e TIN5 st e

— [y [=

-

The one recommendation we have for these early testing activities is to

avoid labeling the findings 'bugs’; typically, these early explorations may
find observations that could be beneficial as well as harmful. You are
looking for areas of risk and providing feedback to the development team.
Much of what you may find may be known or intended, or if not, may be
“better than what was intended.” We recommend you use project tasks to

track these rather than bugs or issues.

Tools Recap

We have mentioned some tools in the previous sections, but just to recap,

here are some ideas:

¢ Dependency checkers — DependencyCheck

o Static Code Analysis — Parasoft, SonarQube

e Unit Tests - xUnit (jUnit, Nunit, PyTest, etc.)

o Performance Tests — JMeter, Gatling, NeolLoad
e API Testing — Postman, Rapise, SoapUl

e Security Testing - OWASP ZAP

o Ul Testing — Rapise, Selenium

o Exploratory Testing — SpiraCapture

Continuous Testing - Shift Left, Shift Right

Shift Right: Monitoring in Production, after (D

In continuous testing, “Shifting Right” refers to continuing to test the
software after it is released into production. Also known as “testing in
production,” the process can refer to either testing in actual production or a

post-production environment.

The key aspect is that Shifting Right is all about leveraging the insights and
usage of real customers and access to production data to test effectively

and support feedback loops.

TESTING

TESTING

Shift Left testing relies on finding problems early with fast, repetitive testing
that uncovers areas of risk and tries to prevent problems from occurring.
Shift Right testing, on the other hand, involves monitoring user behavior,
business metrics, performance and security metrics, and even deliberate
failure experiments (chaos testing) to see how resilient the systemis to

failures.

Inflectra 2021

Continuous Deployment (CD)

In agile projects, Continuous Integration (Cl) means that you are
continuously integrating and testing the code so that it could be
theoretically be deployed into production at any time. However, Continuous
Deployment (CD) takes this one step further and automates the process of
actually deploying the code into production in an automated fashion.
Usually, with CD environments, because you are reducing or eliminating the
manual “go/no-go” decision process, there should be a way to seamlessly

roll back the update just as easily.

Mblimiion A'ppﬁcélim_
Infrastructure (DB, Web, App) Infrastructure (DB, Web, App)
Client 05 Services Client 05 Services
] ——

Client OS Kernel Client 05 Kernel

Virtual Machine Virtual Machine

I VM Host 05 and Hypenvisar |
Physical Server

With CD, a lot depends on the type of application being deployed (SaasS,
Paa$, on-premise, etc.) and the infrastructure in place (physical, virtual,
containerized, cloud, etc.), however in general, CD is all about automating

the process from being release-ready (Cl), tests passed, to being released

into production, with post-release checks in place.

Post Release Testing

Once you have released the system into production, testing does not end.

You will need to perform a variety of post-release tests:

¢ Post-Release Automated Checks
o Usability & Experience Testing
e A/Band Canary Testing

Post-Release Automated Checks

Once the code changes have been deployed into production, you should
automatically run a set of non-destructive, automated functional tests that
test that the code released into production behaves functionally the same
as what was tested in development. This may sound obvious, but it is
amazing how often different configurations used in production (higher

security, higher availability, etc.) can cause the system to behave differently.

You can usually take your existing automated unit tests and run a subset
of them against production. You have to be careful because you are dealing

with live customer data, so some automated tests will have to be modified

or excluded because of how they would change live data.

Usability & Experience Testing

Shift-right testing also is concerned with the business value and usability of
the updated version, i.e., do the new user stories make the system better
for the users. Even though the system is now live, you can still perform
usability and experience testing to make sure that users can understand
any Ul changes and that the system has not degraded the experience. Two

techniques for measuring this are A/B testing and Canary Testing.

A/B and (anary Testing

In digital marketing, A/B testing is a widespread technique that is now
being “borrowed” in the world of software development and DevOps. You
divide up your customers into two groups (‘A" and “B"). Half of the users
get the old version of the system (“A"), and the other half get the new
version of the system (“B”"). This means your CD system needs to be able to
deploy to specific regions or instances at different cadences. You can then
survey or measure users’ interactions with both versions. For example, in

an e-commerce system, you could measure what % of new prospects

purchase a product using the two versions of the system.

A variation of "A/B testing is “Canary Testing" so-called because it mirrors

the idea of the canary in the coal mine that alerts miners to the first
presence of the poison gas. With Canary Testing, you push the latest
update to just a small community of users that you know will react quickly

to any changes. For example, you might have an “early adopter” update

channel to which motivated users can subscribe.

Monitoring

In addition to post-release testing (which tends to happen immediately after
pushing code into production), continuous monitoring is the other aspect of
“Shift Right” testing that needs to be put in place, both system, and

business metric monitoring.

System Monitoring

Many of the non-functional testing tools used in Shift Left testing (load,
performance, security, etc.) have similar tools that are used for monitoring
(performance monitoring, security monitoring, etc.) the same metrics in

production.

So once the code has been pushed into production, you should ideally have
a system monitoring dashboard that lets you see the key metrics (security,
performance, etc.) from the live system in real-time. There are subtle
differences; for example, performance monitoring focuses on checking the

system response time, CPU utilization, etc., under the current load, vs.

generating load to see when problems occur.

Business Monitoring

In addition to system metrics, you can learn a lot about a system by
monitoring the various business metrics and correlating them together. For
example, if you have a website that tracks signups (conversions) and
actual sales (revenue/orders), you can measure the ratio of the two metrics
(sales conversion rate), and if you were to get a sudden drop in this rate
after a code push, you would quickly know to check the user flow to make

sure a bug has not been introduced that prevents a user completing a sale.

Monthly Revenue (YoY)

201809 2018110 amam 201812 201901 201902 201903 2009004 201905 201906 2msi07 201908
B Curvent Year M Previous Year
|

Monthly Conversions (YoY)

2018109 201810 201841 01812 201801 201902 201903 201504 2099005 201906 201907 201508
B Current Year M Previous Year

In this way, business metrics can be a helpful indicator of a problem that

system monitoring may have missed! In addition, monitoring different
business metrics can be used to “test” the business value of system
changes. For example, a change that makes the application faster but
generates less valuable orders might be desirable for users, but not for the

company!

User Monitoring & Feedback

Another important source of feedback on a system release is users.
Therefore, your customer support system (help desk, service management
solution (ITSM), etc.) is an important source of feedback data. If you have
accidentally introduced a new defect or functionality regression, your users
will let you know quickly.

KronoDesk # ® & 2 w & sem a n -
‘ Carla Customer Library Catalog System ~ Please Select - v | PlesseSelect— v | 1-Crltical ~ | Ssles
Sl A e @ % O ot VA L —

carlacustomer *
n Ah, that means that the I for the book are set to not allow author changes.

Select files to upload

howreves | noti Save button, unchecked,

Q e @ ;E‘.ﬂ:,n oot

Author fieid, your checkbox at tothe Save button that reads 'Verity Changes’ because changi

@ ertor_message bt @ ErvorSareenshot ot
by Carla T Customer by Cala T Customer

If you start seeing a trend from trusted users raising support tickets about
a specific issue, you can immediately have a ‘tiger team’ do an investigation
and get a hotfix into the CI/CD pipeline, or if serious enough, you can

potentially rollback the change before it affects other users.

Chaos Engineering & Self-Healing

Finally, one relatively innovative approach taken by some companies (most
notably Netflix with its Chaos Monkey) is to have an automated agent that
deliberately (and randomly) terminates instances in production to ensure

that engineers implement their services to be resilient to instance failures.

If you decide to implement Chaos Engineering, you will need to ensure you
have developed real-time monitoring and “self-healing” services that detect
the failures and can have the system adapt to them in real time. For
example, you could have the infrastructure spin up additional resources,
route traffic around the degraded instances, and take other protective and

reactive measures.

Tools Recap

We have mentioned some tools in the previous sections, but just to recap,

here are some ideas:

¢ System Monitoring
¢ Performance - Dynatrace

e Security - Cloudwatch

e Customer Help Desk — ZenDesk, KronoDesk, Remedy, etc.

https://netflix.github.io/chaosmonkey/

Customer Behavior = Google Analytics, Splunk, Matomo

Business Monitoring
Traditional Bl Platforms — PowerBlI, Splunk, Cognos, Domo, etc.
Al-Driven Data Analytics - Qlik, Tellius, etc.

Data Visualization - Tableau, etc.

Customer Satisfaction — Delighted, Promoter, AskNicely, etc.

Assessing Risk and Deciding Whether to Go Live

The final part of Continuous Testing is the part in the middle: in between

rapid testing that identifies risks and uncovers areas to test further and
released into production is the part where you evaluate all of the test

results and decide whether to go live.

€ clack ta et Fun List B G Booeee | @ik B @ s v
Disasy.

Ability te create new auther

37 a2 T 1 & ITREDT s s (NG
BP0 (TR

oo [dsimes @ nodents o Tk D Heory

e Thchali Dbeailly Thos:
=l Felpase # 10,0003 - SRR £03 * Test 52t [Extnutor Datc

ikl er— S p— Estimatial Duatian i 015

=t Suus Duratlon fal 10

S 1a-reb-2oTE TR Tustar Hame” Fred B e

3 2 et B — sase okt -
it Eet :
» 14-Fab-2013 [TREE1 Uperlrg Suber — gy 'J!_kﬁ g

1Rl 207 (TR Satatid wcimatian

Auear Hame

Aszert Ceurt

fnst Hame Aramatian Host s Windows ¥ Hat

iessage L

i Cbjuit vaiabik. o Wil Block varlatin net st
S| & R Discriatior: An harcliad arcaption oo durrg the sscsion of th Catant wid (scusst M s e Stak Tacs fur mon inlanraton ahou the

In a true Continuous Deployment (CD) system, you may have automated
the part where the DevOps infrastructure pushes code into production. Still,
even so, you will need to have codified the rules to determine when the
system is “stable enough” for release. In a traditional “manual’ release
process, you have a human manager reviewing the testing information and

deciding to go live.

In either case, you are going to have to answer the following two questions:

e How Do We Know if We Can Release into Production?

e How Do We Know We Have Tested the Right Areas?

We Don't Have Enough Time to Test Everything!

The reality is that whether manual or automated, you will not have enough
time in an agile, CI/CD environment to retest every part of the system 100%
with all your tests. If you use a combination of Shift-Left techniques to
know where to focus, deeper testing in the middle to explore those areas,
and Shift-Right to be able to identify and recover quickly from a problem,
then the key is to understand at what point do you have enough data to
determine that the risk from releasing is less than the risk from not

releasing.

Leqend. D D Prodien Eatltion

[T T N,

Schichule Prosgiess (hoas st b ladeay) Requiremeais Carngalide

e S Bl | i i

That does not mean there is zero risk from a bug, just that the risk of a bug
occurring is less critical than the risk that existing bugs remain unfixed, and

that the business risk of delaying that feature is greater than the business

risk of an issue that impacts users.

Conclusion

In conclusion, when you are looking to incorporate Continuous Testing
practices into your DevOps process, these are the three areas you will need

to prioritize and plan for:

e Integrate Shift-Left techniques into your Cl Pipeline. Address risk areas
identified early to focus deeper testing

o Add Shift-Right techniques into your post-deployment infrastructure so that
testing doesn't end after live

e Have a risk-based approach to deciding when to release functionality into

production

by Adam Sandman,

The founder and CEO,

Inflectra
adam.sandman(@inflectra.com

Founded in 2006, Inflectra is a market leader in software test
management, test automation, application lifecycle
management, and enterprise portfolio management space with
its SpiraPlan, Rapise an esk Platforms. The company is
headquartered in the U in over 10 countries.
Known globally for its pport, Inflectra
makes turn-key solu llenges in
software testing a duct lifecycle
management. Its ols are used
in regulated ind

pricing model fo
sprints, tests, APl c
products have a 30-day

ed products, projects,
a single price. All Inflectra

